C-Li (Carbon-Lithium) System

James Sangster

Equilibrium Diagram

The assessed C-Li phase diagram is shown in Fig. 1. Information concerning this system was reviewed by [Shunk], [Elliott], and [1989Oka]. The principal features of this diagram are: (a) a liquid (liquidus incompletely defined), (b) eutectic temperature and composition, and (c) the compound C_2Li_2 . [1957Fed] performed thermal analysis on mixtures of 50-99.5 at.% Li, and measured the vapor pressure of compositions 86, 89, and 92 at.% Li. [1957Fed] also reported temperature arrests at approximately 560, 440, and 410 °C. These were attributed [1957Fed] to solid-solid transitions of C_2Li_2 . As discussed below, the evidence for such transformations in solid C_2Li_2 is not definitive, and these have been omitted from the equilibrium diagram. (All data points of [1957Fed] were tabulated in [1989Oka].)

The equilibrium phases in this system were established by [1962Sec1, 1962Sec2, 1967Sec]. These authors equilibrated mixtures of 2-55 at.% Li and quenched samples from 350 to 1000 °C. XRD showed that C_2Li_2 is the only compound that is in equilibrium with C and Li. Chemical analysis was performed by flame photometry and also by combustion followed by absorption in alkaline solution. [1957Fed] observed eutectic arrests as far as 99.5 at.% Li. The reported eutectic [1957Fed] is 165 °C at >99 at.% Li; the experimental M.P. of Li was 176 °C. In [1981Shi] it is stated that "...carbon is not soluble in lithium below 650 °C." This qualitative statement was unsupported by any mention of measurement or data source. The freezing point depression relation (or law of limiting slopes) at the Li extreme is

$$(dX_{\text{liquid}}/dT) - (dX_{\text{solid}}/dT) = \Delta_{\text{fus}}H/RT_{\text{fus}}^2, \quad (\text{Eq 1})$$

where the first and second terms on the LHS are the limiting slopes of liquidus and solidus respectively, $\Delta_{\text{fus}}H$ is the enthalpy of fusion of Li and T_{fus} is the M.P. of Li.

Assuming zero solid solubility of C in Li and discrete differentials, Eq. 1 may be rearranged to

$$\Delta X_{\text{liquid}} = (\Delta_{\text{fus}} H) (\Delta T) / R T_{\text{fus}}^2.$$
 (Eq 2)

The accepted M.P. of Li is 180.6 °C [Melt], while the experimental value is 176 °C.

On the assumption that the experimental eutectic temperature is 180.6-176 = 4.6 °C too low (i.e., $\Delta T = 4.6$ °C) and that the enthalpy of fusion of Li is 3 kJ mol⁻¹ [1983Cha], $\Delta X_{\text{liquid}} = 0.008$, in agreement with experiment [1957Fed].

Fig. 1 Assessed C-Li phase diagram

Compounds

The alkali metals exhibit three types of intermediate compounds with carbon. For lithium, these may be designated as:

- simple C-Li compounds C_rLi_v (1)
- (2)lithium-graphite intercalation compounds
- lithium-fullerene exohedral and endohedral compounds (3)

In the chemical literature, molecular formulas for C-Li compounds have been written with either C or Li placed first, without much consistency. In the present instance, C will always come before Li.

Simple C-Li Compounds C_xLi_v

C₂Li₂ (lithium acetylide, lithium carbide) was prepared by heating lithium and carbon in vacuo at temperatures between 525 and 1000 °C [1898Gun, 1955Her, 1965Juz1, 1967Juz, 1967Sec]. The carbon may be in the form of diamond, graphite, or amorphous carbon. C₂Li₂ was found in the products of the reaction in vacuo between Li vapor and C₃-C₄ alkenes, CHCl₃ or CCl₄ [1975Mor, 1983Lan]. It was identified by its reaction product with water or D₂O [1898Gun, 1975Mor, 1983Lan]. It was characterized by XRD [1962Sec1, 1962Sec2, 1962Sec3, 1965Juz1, 1967Sec, 1967Juz].

C₂Li₂ probably decomposes before melting [1967Mes]. [1955Her] prepared the compound at 1000 °C without mentioning melting or decomposition. Knudsen effusion experiments (decomposition products) were performed at 700-1300 °C [1989Kud, 1992Kud, 1993Kud]. A "melting

point" of 927 °C is given in a recent compilation [1999Bin] without data source or explanation.

There is evidence that C_2Li_2 may exist in more than one crystalline form. This is discussed under "Crystal Structures and Lattice Parameters" below.

Recently a number of simple C-Li compounds (other than C_2Li_2) have been prepared. They are listed in Table 1, together with reaction conditions and identification methods. They may be considered perlithiated versions of the corresponding hydrocarbons. All are stable at RT, except C_4Li_4 (stable at -20 °C and decomposing slowly at RT). It should be noted that the existence of most of these compounds was inferred from their reaction products with water or D₂O. Only C₄Li₄ was detected in situ [1978Rau]. None have been isolated and characterized by other means.

Lithium-Graphite Intercalation Compounds

These are also called "lamellar," "layered," "interstitial" or "insertion" compounds. All alkali metals form graphite intercalation compounds, but those with Li or Na are fewer and are formed less easily than those of the heavier alkali metals. The structure of graphite and metal intercalation compounds is shown schematically in Fig. 2. Graphite has a layered structure, in which the carbon atoms are arranged in parallel planes, in each of which they form a network of hexagons [1971Nov]. There is no chemical bonding between the layers and so alkali metals can be inserted rather easily between the layers. The separation of the adjacent layers increases somewhat when alkali metal atoms are inserted.

The conventional method of indicating the stoichiometry of metal-graphite intercalation compounds is C_xM , where x

Compound	Reactants	Solvent	Temperature, °C	Identification Reaction (analytical method)	Reference
C ₃ Li ₄	Propyne, butyllithium	Hexane	Reflux	H ₂ O (IR)	[1965Wes, 1969Wes]
CLi ₄	Li, CCl ₄	In vacuo	800-1000	D_2O (MS)	[1972Chu]
C ₂ Li ₆	Li, C ₂ Cl ₆	In vacuo	800-1000	D_2O (MS)	[1972Chu]
C ₅ Li ₄	1,3-pentadiyne, butyllithium, TMEDA	Butane	Reflux	H ₂ O, D ₂ O (GLC, MS)	[1973Chw]
C ₂ Li ₄	Li, 1-alkenes	In vacuo	700-800	H ₂ O, D ₂ O (NMR, GLC, MS)	[1975Mor]
C ₃ Li ₄					
C ₂ Li ₆					
C ₂ Li ₄	Li, halogenated alkenes	In vacuo	800-1000	D ₂ O in THF (GLC)	[1975Sne]
C ₃ Li ₄					
C ₂ Li ₆					
C ₄ Li ₄	C ₂ Li ₂ , hv	Liquid NH ₃	-45	(a)	[1978Rau]
C ₃ Li ₆	Li, halogenated benzenes	In vacuo	800	D_2O (GLC, MS)	[1978Shi]
C ₃ Li ₄					
CLi ₄	Li, CHCl ₃	In vacuo	750	D_2O (GLC, MS)	[1983Lan]
C ₂ Li ₆	Li, CCl ₄	In vacuo	750	$D_2O(GLC, MS)$	
(a) In situ ana DMF = dime	alysis (NMR, IR, Raman in lie thyl formamide	quid NH ₃ , or DM	ИF)		

Table 1 Preparation of small C-Li compounds (excluding C₂Li₂)

GLC = gas-liquid chromatography

IR = infrared spectroscopy MS = mass spectrometry NMR = nuclear magnetic resonance THF = tetrahydro furan Raman = Raman spectroscopy TMEDA = tetramethyl ethylenediamine

		<u> </u>		
		·		
		<u> </u>		
Graphite	S tage I	S tage II	Stage III	S tage IV

Fig. 2 Schematic representation of the structure of graphite and lithium-graphite intercalation compounds. *Solid lines*: graphite layers. *Dashed lines*: metal layers. The patterns repeat themselves in both directions

may be an integer or fractional number. The formula C_xM does not represent a molecule of (x + 1) atoms; rather, it indicates merely the atom ratio C/M in a macroscopic sample.

The intercalation compounds (Fig. 2) are named "first stage," "second stage," etc. according to the number of graphite layers separating the metal layers. The stoichiometry C_xM assigned to a particular stage compound should be regarded as nominal or average. The overall stoichiometry is established by chemical reaction and analysis, the particular stage by XRD.

The common methods for the preparation of Li-graphite intercalation compounds are:

- reaction with Li vapor
- reaction with liquid Li
- in organic solvent solution

A summary is given in Table 2. Both natural and synthetic graphite have been used.

In general, the temperature must be kept below 500 °C in order to suppress formation of C_2Li_2 . In the preparation in solution, the compound precipitates from solution and is isolated for characterization. In addition to those mentioned in Table 2, [1991Dah] used an electrochemical method at 0-70 °C. The compounds C_6Li_x (0 < x < 1) were identified by an amperometric titration procedure and in situ XRD.

The direct combination of graphite and Li may be effected at high pressure. The method is reviewed in [1994Con]. Representative data are given in Table 3. The reaction is usually carried out under Ar. [1979Bil1] and [1979Bil2] used a Li-Na mixture; no Na entered the graphite because its affinity for graphite is lower than that of Li [1977Her], and the two alkali metals form neither intermediate compounds nor solid solutions [1990Mas]. Annealing in vacuo or under low pressure Ar was sometimes used to obtain large samples of C₆Li [1972Gue, 1975Gue]. C₆Li prepared at low or high pressure is stable at ambient pressure. Compounds C_xLi(x < 6) decompose slowly at ambient pressure [1989Bel, 1989Sya, 1994Udo] or are stable under these conditions [1992Nal].

From Tables 2 and 3 and an examination of the pertinent literature, it may be concluded that first stage C_6Li is the principal lithium-graphite intercalation compound, and it

 Table 2
 Preparation of lithium-graphite intercalation compounds by various methods (low pressure)

Compound Reported	Stage	Reactant	Solvent	Temperature, °C	Reference
C ₄ Li (?)		Li vapor		500	[1955Her]
C ₆ Li	1	Li vapor			[1965Juz2]
C ₁₂ Li	2	Li vapor			
C ₁₈ Li	3Li vapor				
C ₆ Li	1	Li vapor			[1966Bag]
C ₁₈ Li	2 Li vapor				
C ₃₆ Li	4	Li vapor			
C ₇₂ Li	8	Li vapor			
C ₆ Li	1	Li liquid		400	[1968Sal]
C _{41.5± 1.5} Li		Li-naphthalene	THF	Ambient	[1965Ste]
C _{17.5± 1.5} Li		Li-naphthalene	THF	Ambient	
C ₁₆ Li		Li-naphthalene	THF	Ambient	[1965Gol]
C ₄₀ Li		Li-diphenyl	THF	Ambient	
	2,3	Li-phenanthrene	Ethers		[1996Miz, 1997Miz]
C ₆ Li	1	Li vapor		<400	[1975Gue]
C _{15.7± 0.4} Li	2	Li vapor		<400	
C _{23.7± 1.5} Li	2	Li vapor		<400	
C ₁₉₋₃₃ Li	3	Li vapor		<400	
C ₃₇ Li	4	Li vapor		<400	
THF = tetrahydro furan					

Compound Reported	Stage	Temperature, °C	Pressure	Reference
C ₆ Li	1	Ambient		[1972Gue]
C ₆ Li	1	Ambient	10-20 kbar	[1975Gue]
C ₁₂ Li	1 and/or 2	Ambient	10-20 kbar	
C ₁₈ Li	2 and/or 3	Ambient	10-20 kbar	
C ₂₇ Li	3 and/or 4	Ambient	10-20 kbar	
C ₆ Li	1	150		[1979Bil1] (a)
C ₆ Li	1	150		[1979Bil2] (a)
C ₁₂ Li	2	150		
	3	150		
C ₆ Li	1	<350	60 kbar	[1982Avd, 1982Mor]
C ₆ Li	1	200-300	2.8 Gpa	[1983Sem]
C _{2-2.5} Li		1	-	
C ₆ Li	1	350	30-40 kbar	[1989Bel]
C ₃ Li	1	350	30-40 kbar	
C ₂ Li	1	350	30-40 kbar	
C ₆ Li	1	<180	<3 kbar	[1989Sya]
(a) Reactant was Li-Na mixture	2			

 Table 3
 Preparation of lithium-graphite intercalation compounds at elevated pressure

may be prepared at both low and high pressures. The stoichiometry of higher-stage compounds is variable [1975Gue]. This is so because, in low-pressure preparative methods, the stoichiometry is sensitive to the temperature (i.e., the vapor pressure of Li) and in high-pressure methods, it is sensitive to the pressure [1984Sem]. Although these intercalation compounds are not part of the overall C-Li phase diagram (Fig. 1), an "equilibrium phase diagram" of intercalated compounds by themselves may be constructed [1991Dah]. According to [1991Dah], intercalation compounds of stage greater than 4 are not (thermodynamically) stable.

Lithium-Fullerene Compounds

The fullerenes are closed carbon-cage molecules containing only pentagonal and hexagonal rings. They have the general formula C_n , where *n* is an even integer greater than 20 [1995Fow]. The bestknown fullerenes are C_{60} ("soccer ball" shape) and C_{70} .

 C_{60} may be prepared in an ac arc between graphite electrodes in subatmospheric Ar or He. The C_{60} is extracted from the smoke of carbon particles by an organic solvent [1990Hau, 1990Kra, 1990Tay, 1991Bet]. It may also be prepared by a vaporizing laser beam falling on a graphite surface under a high-pressure stream of He [1985Kro] or in a static low-pressure Ar atmosphere [1990Mei].

All the alkali metals form *exohedral* and *endohedral* compounds with fullerene. In exohedral lithium compounds, the Li atoms and fullerene molecules occupy sites on a crystalline lattice; in endohedral compounds, the Li atoms are inside the fullerene cages [1998Lah]. The preparation of exohedral compounds is summarized in Table 4. In the synthesis with LiN₃, the mixtures were heated in vacuo at about 533 K, allowing complete LiN₃ decomposition and insertion of Li into the crystal lattice. The crystallinity was improved by moderate annealing at 550 K [1999Cri].

Table 4Preparation of exohedral Li-fullerenecompounds

Method	x in Li_xC_{60}	Comments	Reference
Electrochemical	0.5, 2,3,4,12	Potentiometric titration Compounds not isolated	[1992Cha]
$LiN_3 + C_{60}$ $LiN_3 + C_{60}$ $LiN_3 + C_{60}$	1 12 1-6, 8, 10, 12, 16, 20, 24, 28	Characterized by XRD Characterized by XRD Characterized by XRD	[1999Yas] [1999Cri] [2001Yas]
$Llln_3 + C_{60}$	1-6, 8, 10, 12, 16, 20, 24, 28	Characterized by AKD	[2001

The Li- C_{60} endohedral compound is conventionally indicated by Li@ C_{60} . It is prepared as thin films by in vacuo bomardment of C_{60} with Li⁺ ions at 15-90 eV [1996Tel]. The pure compound may be isolated by differential solution in organic solvents and/or by chromatography [1998Kra1]. Li@ C_{70} was prepared and isolated in a similar manner [1998Kra2]. From ab initio calculations, it was concluded [1995Tom] that the Li- C_{60} bond in Li@ C_{60} is partially ionic.

Crystal Structures and Lattice Parameters

These are presented in Tables 5 and 6, respectively.

C₂Li₂ and Perlithiated Carbon Compounds

[1957Fed] observed thermal arrests in the C-Li system between 50 and 100 at.% Li. They also reported unindexed x-ray diffractograms of quenched Li-C₂Li₂ and C-C₂Li₂ mixtures. From the data they concluded that C₂Li₂ shows three transitions at approximately 410, 440, and 560 °C. [1967Sec] followed the same procedure of preparation of C₂Li₂ at high temperature, slow cooling, annealing,

Phase	Composition at.% Li	Pearson symbol	Space group	Strukturbericht designation	Prototype	Reference
С	0	hP4	P6 ₃ /mmc	A9	C(graphite)	[King1]
С	0	cF8	$Fd\bar{3}m$	<i>A</i> 4	C(diamond)	[King1]
С	0	cF240	$Fm\overline{3}m$		C ₆₀	[1991Hei]
C ₇₂ Li	1.4	hP^*				[1966Bag]
C ₄₀ Li	2.4	hP^*				[1965Gol]
C ₃₆ Li	2.7	hP^*				[1966Bag]
C ₁₈ Li	5.3	hP^*				[1965Juz2]
C ₁₆ Li	5.9	hP^*				[1965Gol]
C ₁₂ Li	7.7	hP^*	P6/mmm			[1975Gue]
C ₆ Li	14.3	hP7	P6/mmm			[1975Gue]
C_2Li_2 (a)	50.0	<i>oI</i> 8	Immm		Cs_2O_2	[1965Juz1]
C_2Li_2 (a)	50.0	mP78	P2/m			[1962Sec3]
Li	100.0	cI2	Im3m	A2	W	[King1]
(a) C ₂ Li ₂ ma	ay exist in more than one cry	stal structure. See text				

 Table 5
 C-Li Crystal Structure Data

Table 6 C-Li Lattice Parameter Data

	Composition	Lattice	param	eter, nm		
Phase	at.% Li	а	b	с	Comment	Reference
C (dia)	0	0.54308				[Pearson3]
C (gr)	0	0.24612		0.67090		[King1]
C (C ₆₀)	0	1.411				[1991Ste]
		1.4161				[1992Tan
		1.417				[1991Hei]
		1.4172				[1992Aga]
C ₇₂ Li	1.4			2.705		[1966Bag]
C ₃₆ Li	2.7			1.375		[1966Bag]
C ₁₈ Li	5.3	0.428 (a)		1.044 (a)		[1965Juz2]
		0.740		0.705		[1966Bag]
C ₁₂ Li	7.7	0.4288		0.7065		[1975Gue]
		0.4290		0.7029		[1965Juz2]
C ₆ Li	14.3	0.4305		0.3706		[1975Gue]
		0.429		0.737		[1965Juz2]
C ₂ Li ₂	(b) 50.0	0.3655	0.5440	0.4830		[1965Juz1]
C ₂ Li ₂	(b) 50.0	0.7801	0.8815	1.0865	$\beta=76.8^\circ$	[1962Sec3]
Li	100.0	0.35093				[King1]
(a) App	roximate value	[1965Juz2	2]			
(b) See	note (a) of Tab	ole 5				

quenching and x-ray examination. Only one form of C_2Li_2 was detected [1962Sec1, 1962Sec2, 1967Sec], viz., that of [1962Sec3]. Examination of a single crystal of C_2Li_2 gave the same result [1967Sec]. [1967Juz] observed no change in crystal structure up to 350 °C. [1967Sec] speculated that the evidence of apparently different modifications was an impurity effect.

[1965Juz1] and [1967Juz] found C_2Li_2 to be orthorhombic, whereas [1962Sec3] reported a monoclinic structure. It is to be noted that [1962Sec3] explicitly stated the cooling regimen of the sample prepared at high temperature, but [1965Juz1, 1967Juz] did not. The question as to the existence of more than one crystalline structure remains open.

Although acetylene is a linear molecule, C_2Li_2 is planar and there is little or no C-Li covalent bonding [1967Mes, 1976Ape, 1985Chi]. The same is true for other perlithiated C-Li molecules, based on IR spectroscopy and ab initio molecular orbital calculations: C_3Li_4 , from propyne [1969Wes, 1977Jem, 1996Mar1], C_2Li_6 from ethane [1994Iva], C_5Li_4 from 1,3-pentadiyne [1973Chw], and C_4Li_4 from tetrahedrane [1978Rau].

Lithium-Graphite Intercalation Compounds

The crystal structure of the intercalated compounds is, like graphite itself, primitive hexagonal. [1965Juz2] assigns a space group D^{1}_{6h} to $C_{6}Li$. The lattice parameters of $C_{6}Li$ and $C_{18}Li$ of [1966Bag] and [1965Juz2] differ significantly. There may be two different types or the same structure was indexed differently. It is to be noted that the report of [1965Juz2] is essentially an abstract, with no experimental details or discussion, whereas [1975Gue] provides a much fuller account.

Lithium-Fullerene Compounds

The molecular structure of fullerene C_{60} was suggested by [1985Kro, 1987Kro, 1990Kra] to resemble closely that of a soccer ball. Ab initio calculations [1988Sch] indicated that a cluster of C atoms having 60 vertices and 32 faces (20 hexagonal and 12 pentagonal) would be energetically favored. This structure, a truncated icosahedron, would have I_h overall symmetry, i.e., all the C atoms are equivalent. This assignment was confirmed by NMR measurements [1990Joh, 1991Yan] and Raman/IR spectra [1991Bet].

The arrangement of the C_{60} molecules in the crystal structure was deduced from powder XRD [1990Kra, 1991Hei]. Originally it was thought that the spheres were stacked in a hexagonal close-packed lattice, with

Section II: Phase Diagram Evaluations

a = 1.002 nm and c = 1.636 nm [1990Kra]. Later more careful examination showed that the crystal structure is fcc [1991Hei] at ambient temperature.

At -24 °C the structure becomes simple cubic (cP240) and a = 1.404 nm at 11 K [1991Hei].

According to [1992Jin], this transition probably represents a crystal/plastic crystal transformation. The plausibility of such a first-order transition is supported by ab initio calculations [1991Guo].

The 1:1 compound $C_{60}Li$ is fcc with I_h symmetry, a = 1.418 nm [1999Yas]. The lattice parameters of $C_{60}Li_{12}$ were measured in the temperature range 100-533 K [1999Cri]. At 298 K, the crystal is tetragonal, a = 1.399 nm, c = 1.421 nm; with increasing temperature, these converge to a = 1.978 nm at 553 K, indicating an Fm3m, fcc structure [1999Cri] (the lattice parameters were given only as points on a graph). A series of compounds $C_{60}Li_x$ (x = 1-28) was examined by x-ray powder diffraction. The lithium-rich and lithium-poor compounds in this series were fcc; the intermediate compounds displayed a mixture of fcc and tetragonal two-dimensional polymer phases (see "Pressure" section).

Endohedral compounds have been prepared only as thin films, and no crystalline structure data are available. Since the Li atoms are inside the C_{60} cages, it is expected that the crystalline structure of Li@C₆₀, for example, would be very similar to C₆₀ itself.

Thermodynamics

A short summary of the thermodynamic properties of C_2Li_2 was given by [1976Smi]. Original measurements of the enthalpy of formation are summarized in Table 7. The heat of reaction of C_2Li_2 with water was measured calorimetrically at 17 °C by [1898Gun], who reported a value of -47.3 kJ mol⁻¹ (from diamond). This value was converted to the standard quantity with the use of the enthalpy of formation of diamond [1989Bar] and is shown in Table 7. The value adopted in recent compilations [1982Wag, 1985Cha, 1999Bin] is -59.4 kJ mol⁻¹.

 Table 7
 Standard enthalpy of formation of C₂Li₂

Method	$\Delta_{\rm f} H^{\circ} \left({\rm C_2Li_2, cr, 298.15 \ K} \right) {\rm kJ \ mol}^{-1}$	Reference
Calorimetry	-43.5	[1898Gun]
Calorimetry	-59.4	[1993Kud] (a)
Knudsen effusion	-68.4	[1993Kud]
Knudsen effusion	-67.7	[1989Kud]
Knudsen effusion	-50.5	[1981Asa]
Vaporization	-65.3	[1977Kat]

(a) The source of this datum given by [1993Kud] is the book *Vapor Pressure of the Chemical Elements* (A. V. Nesmeyanov, Elsevier, Amsterdam, 1963). This is an error, as the book contains no such datum. The probable source is [1960Fur] The value

 $\Delta_{\rm f} H^{\circ}({\rm CLi}_4,{\rm g},298.15{\rm K}) = -239.2{\rm kJ\,mol^{-1}}$

was reported from Knudsen effusion/mass spectrometry by [1993Kud].

An electrochemical cell with graphite cathode and solidstate polyethyleneoxide-LiClO₄ electrolyte [1983Yaz] was used to obtain the following data [1993Yaz] at 60 °C:

$$36C + Li = C_{36}Li; \Delta G = -69.5 \text{kJ mol}^{-1}$$

$$C_{36}Li + Li = 2C_{18}Li; \Delta G = -48.1 \text{ kJ mol}^{-1}$$

$$0.5C_{18}Li + Li = 1.5C_6Li; \Delta G = -32.2 \text{ kJ mol}^{-1}$$

By means of Hess' Law, one can deduce the formation Gibbs energies

$$18C + Li = C_{18}Li; \Delta G = -58.8 \text{ kJ mol}^{-1}$$

and

 $18C + 3Li = 3C_6Li; \Delta G = -74.9 \text{ kJ mol}^{-1}$

An electrochemical cell with the LiCl-KCl eutectic as electrolyte at 700 K was used to obtain the formation Gibbs energy [1979Sel]

$$nC(gr) + 2Li(l) = C_nLi_2; \Delta G = -82.9 \text{ kJ mol}^{-1}$$

where n is indeterminate.

The enthalpy of formation of exohedral lithium fullerides was calculated by the Born-Haber cycle. For $C_{60}Li_3$, the values are -75 kJ mol^{-1} [1993Tom] and -59 kJ mol^{-1} . [1996Cla]. For $C_{60}Li_6$, the value is -59 kJ mol^{-1} [1993Tom].

The same method was used for endohedral $\text{Li}@C_{60}$ (-131 kJ mol⁻¹) [1993Wan].

Pressure

The preparation of lithium-graphite intercalation compounds under pressure was described in the section "Compounds."

 C_{60} fullerene, like unsaturated organic molecules, can be made to polymerize under certain conditions. Thus at pressures greater than 2 GPa, fullerene polymerizes to form 1-, 2-, or 3-dimensional polymer networks [1994Iwa, 1995Nun, 1996Mar2, 1998Dav, 1999Mar]. Lithium-C₆₀ compounds are similarly affected. $C_{60}Li_x$ (x = 1-28) compounds under pressure treatment yielded trigonal, tetragonal, or rhombohedral structures [1999Yas, 2001Man, 2001Yas].

References

1898Gun: H. Guntz, Sur la chaleur de formation du carbure de lithium (Heat of formation of lithium carbide), *Compt. Rend. Hebd. Séances Acad. Sci*, 1898, 126, p 1866-1868 in French (Equi Diagram, Thermo; Experimental)

- **1955Her:** A. Hérold. Recherches sur les composés d'insertion du graphite (Studies on Graphite Insertion Compounds). *Bull. Soc. Chim. Fr., 5th Ser.*, 1955, p 999-1012, in French (Equi Diagram; Experimental)
- *1957Fed: P.I. Fedorov and Su Mezn-Tszen, The Lithium-carbon System, *Huaxue Xuebao*, 1957, 23, p 30-39 in Chinese (Equi Diagram; Experimental; #)
- **1960Fur:** G.T. Furukawa, M.L. Reilly, and J.H. Piccirelli, Entropies of Some Carbides and Nitrides and Titanium Metal at 298.15 K, *NBS Report No. 6645*, 1960, Preliminary Report on the Thermodynamic Properties of Selected Light-element Compounds, p 10-18 (Thermo; Review)
- **1962Sec1:** D.R. Secrist and W.J. Childs Lithium from carbide reaction studies, *USAEC Report*, 1962, TID-17149. Experimental, 21 p (Equi Diagram)
- **1962Sec2:** D.R. Secrist, The lithium-boron-carbon system, *USAEC ReportKAPL-2182*, 1962, 33 p (Equi Diagram; Experimental)
- ***1962Sec3:** D.R. Secrist and L.G. Wisnyi, The Unit Cell and Space Group of Li₂C₂, *Acta Crystallogr.*, 1962, **15**(10), p 1042-1043 (Equi Diagram, Cryst Structure; Experimental)
- 1965Gol: J. Golé and C. Stein, Étude des composés d'insertion du lithium dans le graphite (Study of lithium-graphite insertion compounds), *Compt. Rend. Hebd. Séances Acad. Sci.*, 1965, 260, p 6351-6354 in French (Equi Diagram, Crys Structure; Experimental)
- **1965Juz1:** R. Juza and V. Wehle, Kristallstruktur des lithiumcarbids (Crystal Structure of Lithium Carbide), *Naturwissenschaften*, 1965, **52**(19), p 537 (Equi Diagram; Crys Structure; Experimental)
- **1965Juz2:** R. Juza and V. Wehle, Lithium-graphit Einlagersungsverbindungen (Lithium-Graphite Layered Compounds), *Naturwissenschaften*, 1965, **52**(20), p 560 in German (Equi Diag, Crys Structure; Experimental)
- 1965Ste: C. Stein, J. Poulenard, L. Bonnetain, and J. Golé, Nouvelle méthode de préparation de composés d'insertion de métaux alcalins dans le graphite (New Method for Preparing Alkali Metal-graphite Insertion Compounds, *Compt. Rend. Hebd. Séances Acad. Sci.*, 1965, 260, p 4503-4505 in French (Equi Diagram; Experimental)
- **1965Wes:** R. West, P.A. Carney, and I.C. Mines, The Tetralithium Derivative of Propyne and its Use in Synthesis of Polysilicon Compounds, *J. Am. Chem. Soc.*, 1965, **87**(16), p 3788-3789 (Equi Diagram; Experimental)
- 1966Bag: M. Bagouin, D. Guérard, and A. Hérold, Action de la vapeur de lithium sur la graphite (Action of Lithium on Graphite), *Compt. Rend. Hebd. Séances Acad. Sci., Ser. C*, 1966, 262(7), p 557-559 in French (Equi Diagram, Crys Structure; Experimental)
- 1967Juz: R. Juza, V. Wehle, and H.-U. Schuster, Zur Kenntnis des Lithiumacetylids (On Lithium Acetylide), Z. Anorg. Allg. Chem., 1967, 352(5-6), p 252-257 in German (Equi Diagram, Crys Structure; Experimental)
- **1967Mes:** C.E. Messer, Lithium and Its Binary Compunds, *Spec. Pub. Chem. Soc.*, 1967, **22**, p 183-198 (Equi Diagram, Crys Structure, Thermo; Review)
- 1967Sec: D.R. Secrist, Compound Formation in the Systems Lithium-carbon and Lithium-boron, J. Am. Chem. Soc., 1967, 50(10), p 520-523 (Equi Diagram, Crys Structure; Experimental)
- 1968Sal: F.J. Salzano, S. Aronson, and A. Ingraham, Comment on Compounds Formation in the Lithium-carbon System, J. Am. Ceram. Soc., 1968, 51(8), p 465 (Equi Diagram; Experimental)
- **1969Wes:** R.E. West and P.C. Jones, Polylithium Compounds. III. Polylithium Compounds from Propyne and 1-butyne, and their

Polysilicon Derivatives, J. Am. Chem. Soc., 1969, **91**(22), p 6156-6161 (Equi Diagram; Experimental)

- 1971Nov: Yu. N. Novikov and M.E. Vol'pin, Lamellar Compounds of Graphite with Alkali Metals, Uspek. Khim., 1971, 40(9), p 1568-1592 in Russian. TR: Russ. Chem. Rev., 1971, 40(9), p 733-746 (Equi Diagram, Crys Structure, Thermo; Review)
- **1972Chu:** C. Chung and R.J. Lagow, Reaction of Lithium Atoms at 800 °C with Chlorocarbons, a New Route to Polylithium Compounds, *J. Chem. Soc., Chem. Commun.*, 1972, **19**, p 1078-1079 (Equi Diagram; Experimental)
- 1972Gue: D. Guérard and R. Hérold, Nouvelle méthode de préparation des composés d'insertion du lithium dans le graphite (New Method for Preparing Graphite-lithium Insertion Compounds), *Compt. Rend. Hebd. Séances Acad. Sci., Ser. C*, 1972, 275, p 571-572 in French (Equi Diagram; Experimental)
- **1973Chw:** T.L. Chwang and R. West, Polylithium Compounds. VII. The Tetralithium Compound from 1,3-pentadiyne and Synthesis of its Organic and Organometallic Derivatives, *J. Am. Chem. Soc.*, 1973, **95**(10), p 3324-3330 (Equi Diagram; Experimental)
- **1975Gue:** D. Guérard and A. Hérold, Intercalation of Lithium into Graphite and Other Carbons, *Carbon*, 1975, **13**(4), p 337-345 in French (Equi Diagram, Crys Structure;Experimental)
- **1975Mor:** J.A. Morrison, C. Chung, and R.J. Lagow, Reaction of Lithium Vapor with Alkenes. A New Synthesis for Polylithium Compounds, *J. Am. Chem. Soc.*, 1975, **97**(15), p 5015-5017 (Equi Diagram; Experimental)
- 1975Sne: L.G. Sneddon and R.J. Lagow, Vapour Synthesis of Polylithium Compounds: The Effect of Halogens in Activating the Carbon-hydrogen Bond, J. Chem. Soc., Chem. Commun., 1975, 8, p 302-303 (Equi Diagram; Experimental)
- **1976Ape:** V. Apeloig, P.v.R. Schleyer, J.S. Binkley, J.A. Pople, and W.L. Jorgesen, The Cyclic Structure of Monomeric Dilithioacetylene, *Tetrahedron Lett.*, 1976, **43**, p 3923-3926 (Crys Structure; Theoretical)
- 1976Smi: J.F. Smith and Z. Moser, Thermodynamic properties of binary lithium systems - a review, J. Nucl. Mater., 1976, 59(2), p 158-174 (Thermo; Review)
- 1977Her: A. Hérold, D. Billaud, D. Guérard, and P. Lagrange, Action compétitive de deux métaux alcalins sur le graphite (Competitive Reaction of Two Alkali Metals with Graphite), *Mater. Sci. Eng.*, 1977, **31**, p 5-28 in French (Equi Diagram; Experimental)
- **1977Jem:** E.D. Jemmis, D. Poppinger, and P.v.R. Schleyer, The Curious Structure of the Lithiocarbon C₃Li₄, *J. Am. Chem. Soc.*, 1977, **99**(17), p 5796-5798 (Crys Structure; Theoretical)
- **1977Kat:** D.A. Katskov, B.V. L'vov, and V.I. Danilkin, Atomic Absorption Spectrometric Determination of Standard Heat of Formation of Lithium Carbide Li₂C₂, *Zh. Prikl. Spektrosk.*, 1977, **27**(4), p 585-691 in Russian (Thermo; Experimental)
- **1978Rau:** G. Rauscher, T. Clark, D. Poppinger, P.v.R. Schleyer, C₄Li₄, Tetralithiotetrahedrane? *Angew. Chem.*, 4:306-307, in German; TR: *Angew. Chem. Int. Ed. Eng.*, 1978, **17**(4), p 276-278 (Equi Diagram; Experimental)
- **1978Shi:** L.A. Shimp, C. Chung, and R.J. Lagow, The Reaction of Lithium Vapor with Benzene and Halobenzenes, *Inorg. Chimica Acta*, 1978, **29**(1), p 77-81 (Equi Diagram; Experimental)
- **1979Bil1:** D. Billaud and A. Hérold, Nouvelle méthode de préparation de composés graphite-lithium (New Method of Preparing Graphite-lithium Compounds), *Carbon*, 1979, **17**(2), p 183 in French (Equi Diagram; Experimental)
- **1979Bil2:** D. Billaud, E. McRae, and A. Hérold, Synthesis and Electrical Resistivity of Lithium-pyrographite Intercalation

Section II: Phase Diagram Evaluations

Compounds (stages I, II and III), *Mater. Res. Bull.*, 1979, **44**(1), p 857-864 (Equi Diagram, Crys Structure; Experimental)

- **1979Sel:** J.R. Selman, Electrochemistry of Acetylides, Nitrides and Carbon Cathodes in Molten Halides, *Report COO4445T1*, 1979, 9 p (Thermo; Experimental)
- **1981Asa:** M. Asano, K. Kubo, and H. Kimura, Decomposition Pressure of Lithium Acetylide, *J. Nucl. Mater.*, 1981, **102**(3), p 353-355 (Thermo; Experimental)
- 1981Shi: L.A. Shimp, J.A. Morrison, J.A. Gurak, J.W. Chinn, and R.J. Lagow, Observations on the Nature of Polylithium Organic Compounds and Their Rearrangements, *J. Am. Chem. Soc.*, 1981, 103(19), p 5951-5953 (Equi Diagram; Review)
- **1982Avd:** V.V. Avdeev, V.Z. Mordkovich, and K.N. Semenenko, Synthesis of Interstitial Compounds of Graphite with Some Alkali Metals using High Pressure, *Vestn. Mosk. Univ., Khim.*, 1982, **23**(5), p 501-503 in Russian (Equi Diagram; Experimental)
- **1982Mor:** V.Z. Mordkovich, Intercalation of Some Alkali Metals in Graphite under the Effect of Pressure, *Deposited Document VINITI*, 3676-83, 1982, p 360-363, in Russian (Equi Diagram; Experimental)
- **1982Wag:** D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall, The NBS Tables of Chemical Thermodynamic Properties. Selected Values for Inorganic and C₁ and C₂ Organic Substances in SI Units, *J. Phys. Chem. Ref. Data*, 1982, **11**(2), p 2-296 (Thermo; Compilation)
- **1983Cha:** M.W. Chase, Heats of Transition of the Elements, *Bull. Alloy Phase Diag.*, 1983, **4**(1), p 123-124 (Thermo; Compilation)
- 1983Lan: F.J. Landro, J.A. Gurak, J.W. Chinn, and R.J. Lagow, Synthesis of Lithiomethanes (CH_{4-n}Li_n) and Characterization of the Vapor Species by Flash Vaporization Mass Spectroscopy, *J. Organomet. Chem.*, 1983, 249(1), p 1-9 (Equi Diagram; Experimental)
- 1983Sem: K.N. Semenenko, V.V. Avdeev, and V.Z. Mordkovich, Incorporation of Alkali Metals into Graphite under High Pressure, *Dokl. Akad. Nauk SSSR, Khim.*, 1983, 271(6), p 1402-1405 in Russian; TR: *Dokl. Chem.*, 1983, 271(6), p 273-275 (Equi Diagram, Crys Structure; Experimental)
- **1983Yaz:** R. Yazami and P. Touzain, A Reversible Graphitelithium Anode for Batteries, *J. Power Sour.*, 1983, **9**(3-4), p 365-371 (Thermo; Experimental)
- 1984Sem: K.N. Semenenko, V.V. Avdeev, and V.Z. Mordkovich, A Study of the Reactions of Graphite with Alkali Metals at High Pressures by Quantitative Differential Thermal Analysis, *Zh. Neorg. Khim.*, 1984, 29(9), p 2236-2239 in Russian; TR: *Russ. J. Inorg. Chem.*, 1984, 29(9), p 1277-1279 (Equi Diagram, Pressure; Experimental)
- **1985Cha:** M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, and A.N. Syverud, JANAF Thermochemical Tables, 3rd ed, *J. Phys. Chem. Ref. Data*, 1985, **14**(Suppl.), p 664 (Thermo; Compilation)
- 1985Chi: J.W. Chinn, J.A. Gurak, and R.J. Lagow, New Developments in the Chemistry of Polylithium Compounds, *Lithium: Current Applications in Science, Medicine and Technology*, R.O. Bach Ed., Wiley, NY, 1985, p 291-305 (Equi Diagram, Crys Structure: Review)
- **1985Kro:** H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.C. Smalley, C₆₀: Buckminster Fullerene, *Nature*, 1985, **318**, p 162-163 (Equi Diagram; Experimental)
- **1987Kro:** H.W. Kroto, The Stability of the Fullerenes C_n , with n = 24, 28, 32, 36, 50, 60 and 70, *Nature*, 1987, **329**, p 529-531 (Structure; Review)

- 1988Sch: T.G. Schmalz, W.A. Seitz, D.J. Klein, and G.E. Hite, Elemental Carbon Cages, J. Am. Chem. Soc., 1988, 110(4), p 1113-1127 (Structure; Theory)
- **1989Bar:** I. Barin, *Thermochemical Data of Pure Substances*. VCH Verlagsgesellschaft, Weinheim, 1989 (Thermo; Compilation)
- **1989Bel:** I.T. Belash, O.V. Zharikov, and A.V. Palnichenko, Synthesis, Stability and Structure of GIC with Li, Na and K, *Syn. Met.*, 1989, **34**(1-3), p 47-52 (Equi Diagram, Crys Structure; Experimental)
- **1989Kud:** Kudo H., Observation of CLi₃ and CLi₄ in the Vapor Over Li₂C₂ (s), *Chem. Lett.*, 1989, **9**, p 1611-1614 (Equi Diagram, Thermo; Experimental)
- *1989Oka: H. Okamoto, The C-Li (Carbon-Lithium) System, Bull. Alloy Phase Diag., 1989, 10(1), p 69-72 (Equi Diagram, Crys Structure, Thermo; Review; #)
- **1989Sya:** K. Syassen, R. Sonnenschein, M. Hanfland, and H.J. Beister, Graphite and Graphite Intercalation Compounds under Pressure: Raman Modes, Optical Reflectivity and Phase Changes, *Syn. Met.*, 1989 p 293-306 (Equi Diagram; Experimental)
- 1990Hau: R.E. Haufler, J. Conceicao, L.P.F. Chibante, Y. Chai, N.E. Byrne, S. Flanagan, M.M. Haley, S.C. O'Brien, C. Pan, Z. Xiao, W.E. Billups, M.A. Ciufolini, R.H. Hauge, J.L. Margrave, L.J. Wilson, R.F. Curl, and R.C. Smalley, Efficient production of C₆₀ (buckminster fullerene), C₆₀H₃₆ and the Solvated Buckide Ion, J. Phys. Chem., 1990, 94(24), p 8634-8636 (Equi Diagram; Experimental)
- **1990Joh:** R.D. Johnson, G. Meijer, and D.S. Bethune, C₆₀ has Icosahedral Symmetry, *J. Am. Chem. Soc.*, 1990, **112**(24), p 8983-8984 (Structure; Experimental)
- **1990Kra:** W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Solid C₆₀: a New Form of C, *Nature*, 1990, **347**, p 354-358 (Equi Diagram; Experimental)
- **1990Mas:** T.B. Massalski Ed., Binary Alloy Phase Diagrams, 2nd ed., Vol. 3, ASM International, Metals Park, 1990, p 2448-2450 (Equi Diagram; Review)
- **1990Mei:** G. Meijer and D.S. Bethune, Laser Deposition of C Clusters on Surfaces: a New Approach to the Study of Fullerenes, *J. Chem. Phys.*, 1990, **93**(11), p 7800-7802 (Equi Diagram; Experimental)
- **1990Tay:** R. Taylor, J.P. Hare, A.K.A. Abdul-Sada, and H.W. Kroto, Isolation, Separation and Characterization of the Fullerenes C_{60} and C_{70} : The Third Form of Carbon. *J. Chem. Soc., Chem. Commun.*, 1990, p 1423-1435 (Equi Diagram, Crys Structure; Experimental)
- **1991Bet:** D.S. Bethune, G. Meijer, W.C. Tang, H.J. Rosen, W.G. Golden, H. Seki, C.A. Brown, and M.S. de Vries, Vibrational Raman and Infrared Spectra of Chromatographically Separated C₆₀ and C₇₀ Fullerene Clusters, *Chem. Phys. Lett.*, 1991, **179**(1-2), p 181-186 (Equi Diagram, Crys Structure; Experimental)
- **1991Dah:** J.R. Dahn, Phase Diagram of Li_xC₆, *Phys. Rev. B, 3rd Ser.*, 1991, **44**(17), p 9170-9177 (Equi Diagram; Experimental)
- **1991Guo:** Y. Guo, N. Karasawa, and W.A. Goddard, Prediction of Fullerene Packing in C_{60} and C_{70} Crystals, *Nature*, 1991, **351**, p 464-467 (Crys Structure; Experimental, Theory)
- 1991Hei: P.A. Heiney, J.E. Fischer, A.R. McGhie, W.J. Romanow, A.M. Denenstein, J.P. McCauley, A.B. Smith, and D.E. Cox, Orientational Ordering Transition in Solid C₆₀, *Phys. Rev. Lett.*, 1991, 66(22), p 2911-2914 (Crys Structure; Experimental)
- **1991Ste:** P.W. Stephens, L. Mihaly, P.L. Lee, R.L. Whetten, S.-M. Huang, R. Kaner, F. Diedrich, and K. Holczen, Structure of Single-phase Superconducting K₃C₆₀, *Nature*, 1991, **351**, p 632-634 (Crys Structure; Experimental)

- **1991Yan:** C.S. Yannoni, P.P. Bernier, D.S. Bethune, G. Meijer, and J.R. Salem, NMR Determination of the Bond Length in C₆₀, *J. Am. Chem. Soc.*, 1991, **113**(8), p 3190-3192 (Crys Structure; Experimental)
- 1992Aga: V. Agafonov, R. Céolin, P.Y. Sizaret, A. Dworkin, D. André, H. Szwarc, C. Fabre, A. Rassat, L. Straver, and J. Dugué, Morphological Versatility of Solid C₆₀ Fullerene. I. Solid State Studies of Yellow Plates Grown from Benzene Solutions, *J. Chim. Phys. Phys-Chim. Biol.*, 1992, 89(9), p 1879-1886 (Equi Diagram, Crys Structure; Experimental)
- 1992Cha: Y. Chabre, D. Djurado, M. Armand, W.R. Romanow, N. Coustel, J.P. McCauley, J.E. Fischer, and A.B. Smith, Electro-chemical Intercalation of Lithium into Solid C₆₀, *J. Am. Chem. Soc.*, 1992, 114(2), p 764-766 (Equi Diagram; Experimental)
- 1992Jin: Y. Jin, J. Cheng, M. Varma-Nair, G. Liang, Y. Fu, B. Wunderlich, X.-D. Xiang, R. Mostovy, and A.K. Zettl, Thermodynamic Characterization of C₆₀ by Differential Scanning Calorimetry, J. Phys. Chem., 1992, 96(12), p 5151-5156 (Thermo; Experimental)
- **1992Kud:** H. Kudo, Observation of Hypervalent CLi₆ by Knudsen-effusion Mass Spectrometry, *Nature*, 1992, **355**(6359), p 432-434 (Equi Diagram, Thermo; Experimental)
- **1992Nal:** V.A. Nalimova, V.V. Avdeev, and K.N. Semenenko, New Alkali Metal-graphite Intercalation Compounds at High Pressure, *Mater. Sci. Forum*, 1992, **91-93**, p 11-16 (Equi Diagram; Experimental)
- 1992Tan: K. Tanigaki, I. Hirosawa, T.W. Ebbsesen, J. Mizuki, Y. Shimakawa, Y. Kubo, J.S. Tsai, and S. Kuroshima, Superconductivity in Na- and Li-containing Alkali Metal Fullerides, *Nature*, 1992, 356, p 419-421 (Crys Structure; Experimental)
- **1993Kud:** H. Kudo and C.H. Wu, Vaporization of Li₂C₂ (s) and Thermochemical Properties of Gaseous CLi₃, CLi₄ and CLi₆, *J. Nucl. Mater.*, 1993, **201**, p 261-266 (Equi Diagram, Thermo; Experimental)
- 1993Tom: D. Tománek, Y. Wang, and R.S. Ruoff, Stability of Fullerene-based Systems, J. Phys. Chem. Solids, 1993, 54(12), p 1679-1684 (Thermo; Theory)
- 1993Wan: Y. Wang, D. Tománek, and R.S. Ruoff, Stability of M@C₆₀ Endohedral Complexes, *Chem. Phys. Lett.*, 1993, 208(1-2), p 79-85 (Thermo; Theory)
- **1993Yaz:** R. Yazami and D. Guérard, Some Aspects on the Preparation, Structure and Physical and Electrochemical Properties of Li_xC_6 , *J. Power Sour.*, 1993, **43-44**, p 39-46 (Equi Diagram, Crys Structure, Thermo; Experimental)
- **1994Con:** J. Conard, V.A. Nalimova, and D. Guérard, NMR Study of LiC_x Graphite Intercalation Compounds Prepared under High Pressure, *Mol. Cryst. Liquid Cryst. A*, 1994, **245**, p 25-30 (Equi Diagram, Crys Structure; Experimental)
- **1994Iva:** J. Ivanic and C.J. Marsden, Intriguing Structures and Stabilities of C_2Li_x Species (x = 6,8,10,12), *Organometallics*, 1994, **13**(12), p 5141-5148 (Crys Structure; Theoretical)
- 1994Iwa: Y. Iwasa, T. Arima, R.M. Fleming, T. Siegrist, O. Zhou, R.C. Haddon, L.J. Rothberg, K.B. Lyons, H.L. Carter, A.F. Hebard, R. Tycko, G. Dabbagh, J.J. Krajewski, G.A. Thomas, and T. Yagi, New Phases of C₆₀ Synthesized at High Pressure, *Science*, 1994, 264(5165), p 1570-1572 (Pressure; Experimental)
- 1994Udo: I.A. Udod, H.B. Orman, and V.K. Genchel, The Sodium-graphite System under High Pressure Conditions: The Comparison with the Lithium-graphite System, *Carbon*, 1994, 32(1), p 101-106 (Crys Structure; Experimental)
- **1995Fow:** P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes, Chap. 1, Clarendon Press, Oxford, 1995 (Crys Structure; Review)

- **1995Nun:** M. Núñez-Regueiro, L. Marques, J.-L. Hodeau, O. Béthoux, and M. Perroux, Polymerized Fullerite Structures, *Phys. Rev. Lett.*, 1995, **74**(2), p 278-281 (Pressure; Experimental)
- 1995Tom: D. Tománek and Y.S. Li, Ionicity of the M-C₆₀ Bond in M@C₆₀ Endohedral Complexes, *Chem. Phys. Lett.*, 1995, 243(1-2), p 42-44 (Equi Diagram; Theory)
- 1996Cla: D. Claves and Ph. Touzain, Thermodynamics of Intercalation in C₆₀ Fullerite and Stability of Cubic Close-packed Fulleride Compounds, *Syn. Met.*, 1996, 80(3), p 301-307 (Thermo; Theory)
- **1996Mar1:** D.S. Marynick and C. Hawkins, C₃Li₄ Revisited: A Theoretical Study, *Organometallics*, 1996, **15**(2), p 882-883 (Crys Structure; Theoretical)
- 1996Mar2: L. Marques, J.-L. Hodeau, M. Núñez-Regueiro, and M. Perroux, Pressure and Temperature Diagram of Polymerized Fullerite, *Phys. Rev. B*, 1996, 54(18), p R12633-R12636 (Pressure; Experimental)
- 1996Miz: Y. Mizutani, E. Ihara, T. Abe, M. Asano, T. Harada, Z. Ogumi, and M. Inaba, Preparation of Alkali Metal Graphite Intercalation Compounds in Organic Solvents, *J. Phys. Chem. Solids*, 1996, 57(6-8), p 799-803 (Equi Diagram; Experimental)
- **1996Tel:** R. Tellgman, N. Krawez, S.-H. Lin, I.V. Hertel, and E.E.B. Campbell, Endohedral Fullerene Production, *Nature*, 1996, **382**(6590), p 407-408 (Equi Diagram; Experimental)
- **1997Miz:** Y. Mizutani, T. Abe, E. Ihara, K. Ikeda, M. Inaba, Z. Ogumi, and T. Ohkubo, Preparation of Alkali Metal-graphite Intercalation Compounds in Tetrahydrofuran Type Solvents, *Tanso*, 1997, **180**, p 239-244 in Japanese (Equi Diagram; Experimental)
- **1998Dav:** V.A. Davydov, Y. Agafonov, A.V. Dzyabchenko, R. Céolin, and H. Szwarc, Packing Models for High-pressure Polymeric Phases of C₆₀, *J. Solid State Chem.*, 1998, **141**(1), p 164-167 (Crys Structure; Experimental, Theory)
- 1998Kra1: N. Krawez, R.T. Tellgmann, A. Gromov, W. Krätschmer, and E.E.B. Campbell, IR spectroscopy and HPLC separation of endohedral Li@C₆₀. Molecular Nanostructures. H. Kuzmany, J. Fink, M. Mehring, and S. Roth Eds., World Scientific, Singapore, 1998, p 184-188 (Equi Diagram; Experimental)
- **1998Kra2:** N. Krawez, A. Gromov, R. Tellgmann, and E.E.B. Campbell, Production, HPLC Separation and UV-vis Spectroscopy of Li@C₇₀, *AIP Conf. Proc.*, 1998, **442**, p 368-372 (Equi Diagram; Experimental)
- 1998Lah: A. Lahamer, Z.C. Ying, R.E. Haufler, R.L. Hettich, and R.N. Compton, Endohedral Metallofullerenes. Advances in Metal and Semiconductor Clusters 4, JAI Press, Greenwich, 1998, p 179-203 (Equi Diagram; Review)
- **1999Bin:** M. Binnewies and E. Milke, *Thermochenmical Data of Elements and Compounds*. Wiley-VCH Verlag GmbH, Weinheim, 1999, p 258 (Thermo; Compilation)
- 1999Cri: L. Cristofolini, M. Riccò, and R. De Renzi, NMR and High Resolution X-ray Diffraction Evidence for an Alkali-metal Fulleride with Large Interstitial 21 Clusters: Li₁₂C₆₀, *Phys. Rev. B*, 3rd ser., 1999, 59(3), p 8343-8346 (Crys Structure; Experimental)
- 1999Mar: L. Marques, M. Mezouar, J.-L. Hodeau, M. Núñez-Regueiro, N.R. Serebryanaya, V.A. Ivdenko, V.D. Blank, and G.A. Dubitsky, Debye-Scherrer Ellipses' from 3D Fullerene Polymers: An Anisotropic Pressure Memory Signature, *Science*, 1999, 283(5408), p 1720-1723 (Pressure; Experimental)
- **1999Yas:** M. Yasukawa and S. Yamanaka, High Pressure Synthesis of Alkali Metal Doped C₆₀ Polymers, *Fullerene*

Section II: Phase Diagram Evaluations

Sci. Technol., 1999, 7(5), p 795-806 (Pressure; Experimental)

- 2001Man: Y. Maniwa, H. Ikejiri, H. Tou, M. Yasukawa, and S. Yamanaka, NMR of Li-doped C₆₀ Polymers, *Syn. Met.*, 2001, 121(1-3), p 1105-1106 (Pressure; Experimental)
- **2001 Yas:** M. Yasukawa and S. Yamanaka, Synthesis of Li_xC_{60} (x = 1-28) Fullerides under High Pressure and High Temperature Conditions and their Electrical Properties, *Chem. Phys. Lett.*, 2001, **341**, p 467-475 (Equi Diagram, Crys Structure; Experimental)

C-Li evaluation contributed by **J. Sangster**, Sangster Research Laboratories, P.O. Box 49562, 5122 Cote des Neiges, Montreal, Quebec, Canada, H3T 2A5. Literature searched through 2004.